

Network Disaggregation at the Edge With the Open SD-Edge Platform

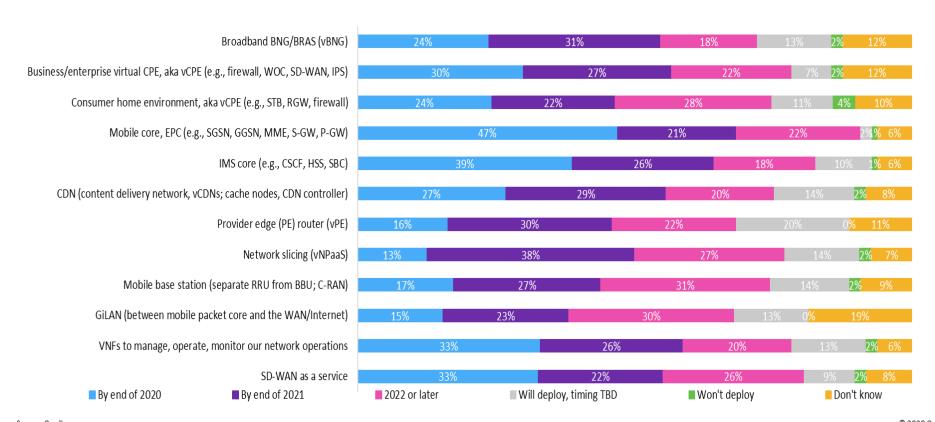
November 11, 2020

Sponsored By:

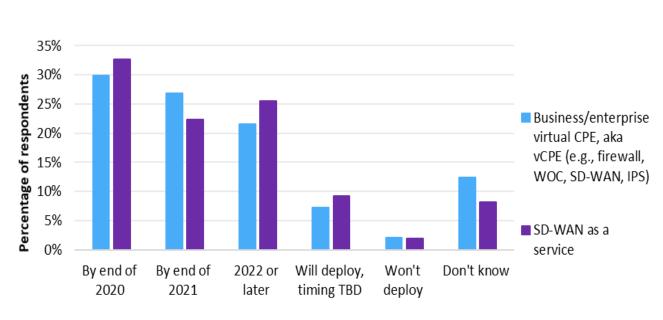
Today's Speakers

Jennifer Clark, Principal Analyst – Heavy Reading

Robert Bays Assistant VP ATT - Vyatta



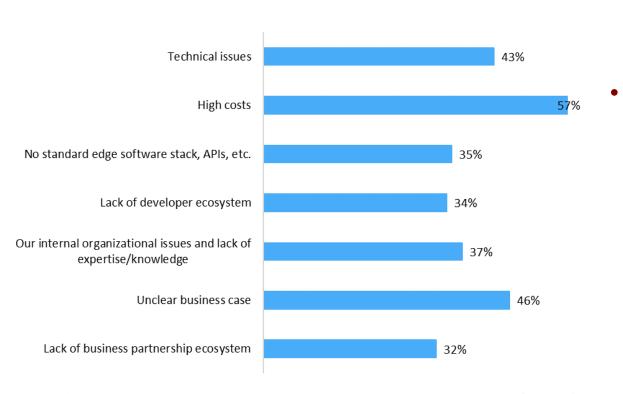
Srikanth KrishnamohanDirector of Product Marketing
IP Infusion


Elad Blatt CSO Silicom

NFV in a Production Environment: Leading Use Cases

Source: Omdia
Information Classification: General

Enterprises are Shifting to Managed Services


Enterprises are shifting from DIY vCPE to managed services, supporting the same VFNs but with improved security, performance, reliability and cost

Deployment timeframe

Notes: n=98–102 © 2020 Omdia

Edge deployment barriers

Select the three biggest barriers to deploying edge applications

- Today, operators are faced with three top challenges to deploying edge:
 - High costs
 - Unclear business case
 - Technical issues

Source: Omdia © 2020 Omdia

Edge Investment: Everything is a Priority

What network investments hold the highest priority in your company in order to fully deploy edge computing?

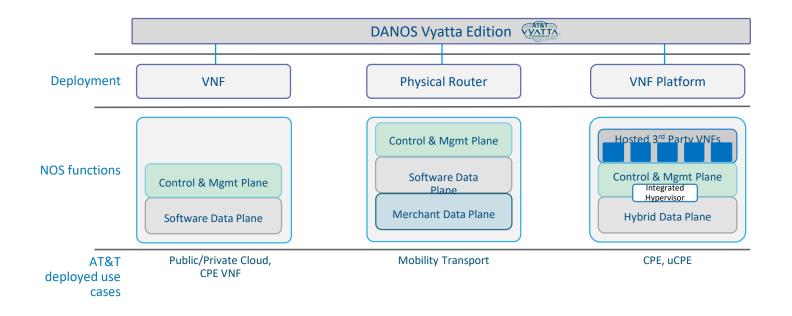
Information Classification: General

© 2020 Omdia

Network Disaggregation at the Edge With the Open SD-Edge Platform

DANOS Vyatta Edition

2020-11-11.1


What is DANOS Vyatta Edition?

- Vyatta was created in 2005 as an open source network operating system running on commodity hardware
 - Original investment thesis was that a fully open source Linux based router could compete in the edge router market segment
- · Company growth exploded with the large scale adoption of cloud computing
 - Engineers realized the need for network segmentation and services in cloud environments
 - First virtual router in AWS launched in 2011
- Over 700 customers by September 2011
- Vyatta was acquired by Brocade in Nov 2012
 - Next generation development was closed source after acquisition
- 2013 Gen 3 architecture introduced high speed, low latency DPDK based software forwarding using general purpose hardware
- Named AT&T Domain 2.0 partner in 2014
- Vyatta was acquired by AT&T in July 2017
- 2018 launch of Gen 4 architecture introduces hybrid merchant silicon / software forwarding
- November 2019 DANOS open source release
- IPinfusion provides commercial support for DANOS Vyatta Edition

How can DANOS Vyatta Edition be deployed?

Why DANOS?

- AT&T wants to build a carrier community around a standardized, open source, telco grade WAN Network Operating System to
 - Lower operational costs through code reuse and by simplifying onboarding, operation and maintenance of network devices across carrier networks
 - Create opportunities for standardized commodity WAN hardware
 - Foster an ecosystem of innovation where third party application developers can create value added applications for a common NOS
- But why do we need yet another open source NOS? DANOS Vyatta Edition:
 - Is focused on Telco WAN network features and operational models
 - Provides familiar interface and administration tools to easily fit into existing networks and deployments
 - Has been tested, certified and deployed at scale in production in the AT&T network
 - Proven highly scalable and performant software data plane and support for merchant silicon forwarding
 - Supports multiple deployment models; merchant silicon switching/routing, x86 based CPE, cloud and virtual functions, edge to core
 - Built from the ground up to support yang/netconf
 - Well defined APIs to facilitate third party applications
 - Regular binary releases to support the user community
- To bootstrap the ecosystem, AT&T released a subset of the Vyatta NOS as DANOS through Linux Foundation
- Commercial support is critical to DANOS success with end users
 - IPinfusion has offered to work with AT&T to provide commercial support for DANOS through the DVE product offering

DANOS vs DVE Feature Overview

Control plane

- AAA
 - ACM/RBAC, RADIUS, TACACS+
- · Chassis manager
- Config sync
- Diamond client
- DNS
 - Host config, Dynamic DNS, DNS forwarding
- DHCP
 - Clientv4/v6, DHCPv4/v6 relay, DHCPv4/v6 server
- DMVPN/NHRP
- GUI
- LLDP
- Logging
 - Remote syslog, journalbeat
- NTP client
- Cellular modems
- Multiple image support
- ONIE
- Path monitor
- Policy based routing
- PTP
- Route Broker
- SNMPv1/v2/v3 server
- SSH/Telnet server
- TWAMP client/server
- Virtual Distributed Router
- Vyatta Component Infrastructure
- Netconf, CLI, REST, Operational mode
- infrastructureVyatta routing protocol stack

- BFD, BGP (v4/v6 unicast, vpnv4/6 unicast, 6PE), IGMP, LDP, MLD, MSDP, Multicast, OAM, OSPFv2, OSPFv3, PIM/PIM6. RIPv2/RIPng, RSVP-TE, Static – replaced with FRR in DANOS
- FRR routing protocol stack
 - BGP, MPLS-LDP, OSPF, OSPFv3, static
- Virtual routing and forwarding (VRFlite)
- Virtualization
 - uCPE (xConnect/vhost), VNF virtualization support, VNF probes
 - Zero touch provisioning

Hardware data plane

- Merchant silicon forwarding abstraction layer (FAL)
 - Broadcom
 - Hurricane 3, Hurricane 3MG
 - Qumran AX, MX
 - Jericho 2
 - Marvell
 - 88E6190X
- L3 ACL support
- CPP, Storm Control
- 12 ---it-lein
- L2 switching
 - Marvell, Broadcom (Hurricane 3/MG, Qumran AX/MX, Jericho 2)
- · IP Unicast Forwarding
 - Broadcom (Qumran –AX/MX, Jericho 2)
- IP multicast forwarding
- Mirror ports
- PTP
 - 1588 default profile, 8275.2

- Router centric configuration model
- L3 config directly on ports (QAX, QMX, J2)
- Hardware packet capture
- Interface breakout
- QoS
 - Shaping, LLQ, WRR, WRED
 - RFC3260, RFC2472, RFC2475, RFC2597
- Spanning tree
- GRE Tunnels
- LAG
- BFD
- VLAN, 802.1Q
- VRF

Software data plane

- BFD
- Bonding/LACP
- Bridging
- CPP
- Data plane vector API
- DHCP client
- Deep packet inspection
- Forwarding abstraction layer
- Stateful Firewall(v4|v6)
 - ACLs, ALGs, Stateful Failover, Zone Based
- Loopback interface
- MPLS (LSR, LER, 6PE, 6VPE, RFC3032)
- MPLS OAM (ping, traceroute RFC8029)
- Stateful NAT(v4|v6)
- ALGs, Stateful Failover
- NAT64/NAT46

- NPTv6
- CGNAT
- · Policy based routing
- PPPoE
- QoS
 - · Shaping, LLQ, WRR, WRED, policing, marking
 - RFC3260, RFC2472, RFC2475, RFC2597
- Packet capture
- Reverse path forwarding
- SPAN/RSPAN/ERSPAN
- Spanning tree
- Transceiver instrumentation SFF8636, SFF8472
- Tunneling
 - GRE (L2 & L3 bridging), IPIP (IPIP, IPIP6, IP6IP, SIT), L2TPv3, VXLAN/VTEP
- Unnumbered interface
- Virtual distributed router
- VPN
 - IPsec
 - IKEv1/2, ESPv3, policy based, route based (VTI), remote access client/server
 - DMVPN, IPsec (interface based/vti), IPsec (policy based), OpenLDAP auth,
 - OpenVPN
 - Site-to-site, remote access client/server
- VRRPv2/v3
- VLAN
 - 802.1q, QinQ
 - VLAN modify push/pop/swap
- · VRF and virtual feature point interfaces

DANOS – How do I get involved?

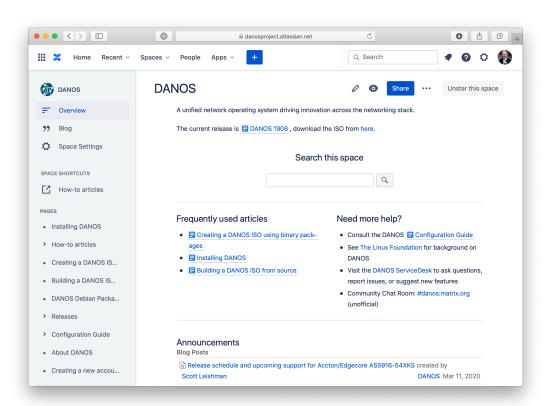
Community

- https://danosproject.org
- Initially supported use cases
 - x86 VNF router (iso)
 - x86 hardware CPE (iso)
 - Broadcom Qumran AX Cell Site Router (ONIE)

Confluence

- User documentation and setup guides
- Links to binary images (iso, ONIE)
- Developer API and build instructions

Jira


Issue tracking and community questions

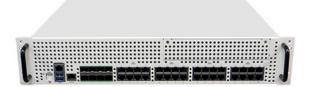
GitHub

- DANOS development is done in GitHub directly upstream first
- Pull requests require developer certificate of origin

Package repository

- Debian package repository setup to allow developers to build iso from binary packages rather than source
- Automatically updated with packages built by Vyatta's continuous integration

Tailor Made Solutions


Off-the-shelf Products

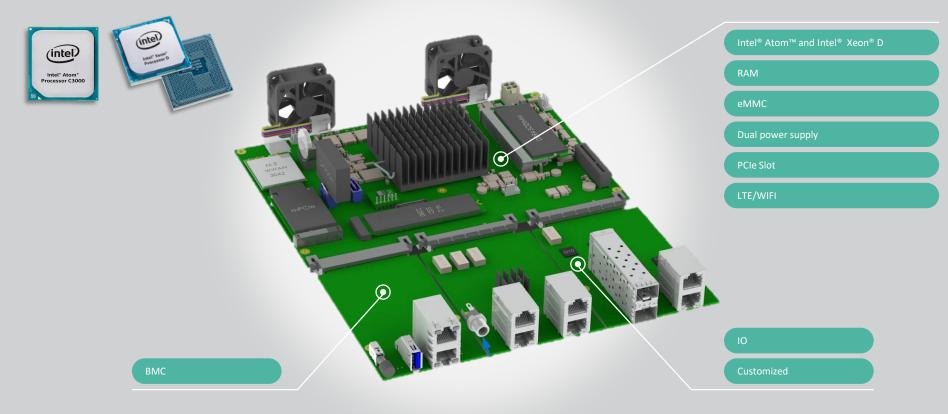
uCPE Modular Lineup

IA3000 Series Intel® Atom® C3000

ID1200 Series Intel® Xeon® D-1500

ID1100 Series Intel® Xeon® D-1500

ID2100 Series
Intel® Xeon® D-2100



2 core Atom® 16 core Xeon®

1G Ethernet 100G Ethernet*

uCPE Modular Platform

uCPE Compute Boards

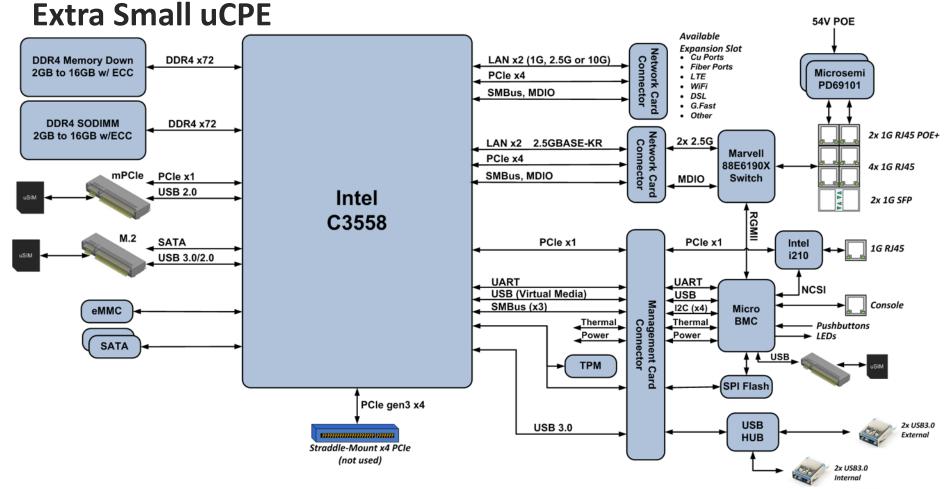
"Denverton"

Intel Xeon-D
"Broadwell-DE"

Intel Xeon-D "Sky Lake-D"

In Development

Intel Xeon-D "Ice Lake-D"

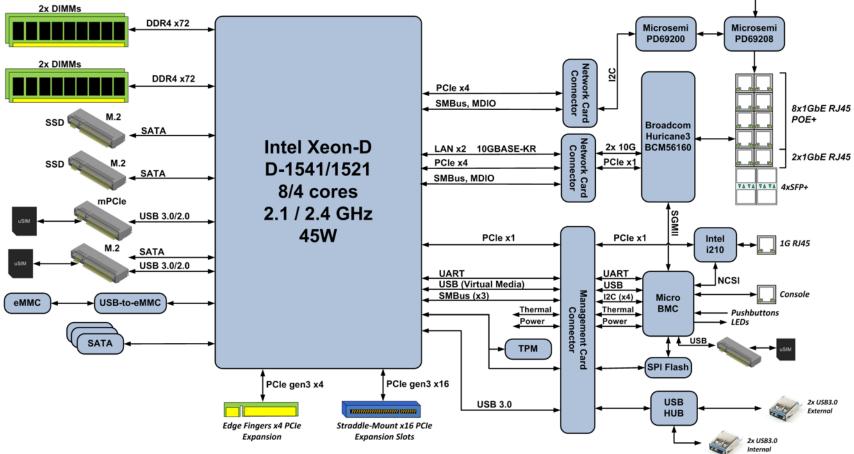

Extra Small CPE

EXTRA SMALL

СРИ	Intel® Atom™ 4 Core C3558
Memory	8GB DDR4 ECC
Storage	64GB eMMC
Switch Silicon	Marvell 88E6190X
Switched Ports	LAN: 4 RJ45, (2 with PoE+) WAN: 2 RJ45 & 2 SFP
Non-Switched Ports	1 RJ45 (Shared with BMC)
вмс	Yes, uBMC
ТРМ	Yes, Infineon SLB 6970 TPM 2.0
QAT	Included in Intel®'s Denverton
USB	2 External
Serial Console	1
Power	Single, with Dying Gasp from BMC
Form Factor	Desktop

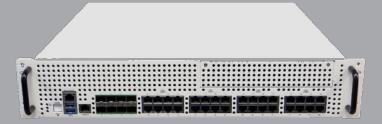
Small and Medium CPE

SMALL


CPU	Intel® Xeon™ D 4 Core 1521
Memory	16GB DDR4 ECC
Storage	200GB SSD Primary
Switch Silicon	Broadcom H3 BCM56160
Switched Ports	LAN: 8 RJ45 LAN, 2 SFP+ (4x PoE+)
Switched Ports	WAN: 2 RJ45 & 2 SFP+
Non-Switched Ports	1 RJ45 (Shared with BMC)
BMC	Yes
TPM	Yes
QAT	No
USB	2
Serial Console	1
Power	Single, with Dying Gasp
Form Factor	1RU

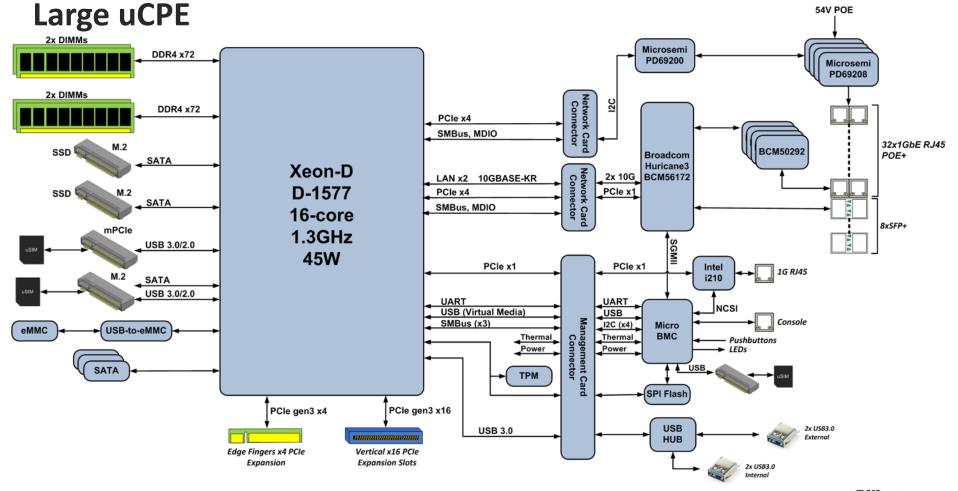
MEDIUM

Intel® Xeon™ D 8 Core 1541
32GB DDR4 ECC
400GB SSD Primary
Broadcom H3 BCM56160
LAN: 8 RJ45 LAN, 2 SFP+ (4x PoE+)
WAN: 2 RJ45 & 2 SFP+
1 RJ45 (Shared with BMC)
Yes
Yes
No
2
1
Dual Redundant, with Dying Gasp
1RU



Small/Medium uCPE

54V POE


Large CPE

LARGE

СРИ	Intel® Xeon™ D 16 Core 1577
Memory	64GB DDR4 ECC
Storage	100GB SSD Primary 2*3 HDD Secondary
Switch Silicon	Broadcom H3 BCM56172
Switched Ports	LAN: 24 RJ45 1GE LAN, 4SFP+(24x PoE+)
Non-Switched Ports	1 RJ45 (Shared with BMC)
вмс	Yes
ТРМ	Yes
QAT	No
USB	2
Serial Console	1
Power	Dual Redundant, with Dying Gasp
Form Factor	2RU

uCPE Modular Platform

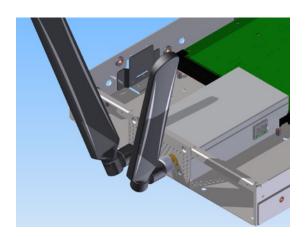
- xDSL Module develop by 3rd party
- GFAST.PCIE.359

VDSL module

200+ Mbps or 5 Kilometers

- Data rates up to 200+ Mbps downstream and upstream on twisted pairs using a bandwidth up to 30 MHz
- VDSL2: ITU-T G.993.2 Profiles 8, 12, 17, 30 MHz
- ADSL: ITU-T G.992.1/3/5 Annexes A, B, I, J, M, L
- ITU-T G.993.5 Vectoring
- ITU-T G.998.4 PHY Layer Re-Transmission profiles up to 30 MHz

VDSL2-EFM Modem


- Plug & Play VDSL2 module
- ADSL fallback (auto-detection)
- Intel® VRX220 transceiver
- Intel® I211 network interface
- Available for oPOTS and oISDN regions
- Supports full transparent access to Intel DSL software management interface

LTE uCPE module\standalone box

- NM Form Factor fits all Silicom uCPE modular Platforms
- LTE or WiFi Radio
- Certified on its own to allow easier homologation
- Two antennas
- Installation Options
 - uCPE module
 - Standalone box

uCPE Module Options

Front Panel I/O Module
Passthrough

Front Panel I/O Module micro-BMC (µBMC)

Silicom's groundbreaking micro-BMC (µBMC) module is an optional ARM-based, open, royalty-free light management solution for uCPE products that provides secure remote management, software/firmware update, and phone home zero touch provisioning.

Network Module NM0 (1G SFP, 1G RJ-45)

Network Module NM1 (Switched 1G RJ-45)

Network Module NM5 (NVMe or SATA SSDs)

Network Module NM5 (SSD & xDSL Modem)

uCPE Module Options (continued)

Network Module NM6 (1G auto media detect)

Insert image here

Network Module NM8 (2x bypass pair, i211)

Network Module NM7 (1G RJ-45, 10G SFP+)

Insert image here

Network Module NM9 (2x bypass pair, i350)

Custom OEM module developments available

Madrid

RMN: IA3101 1U IA3001 Desktop

Feature:

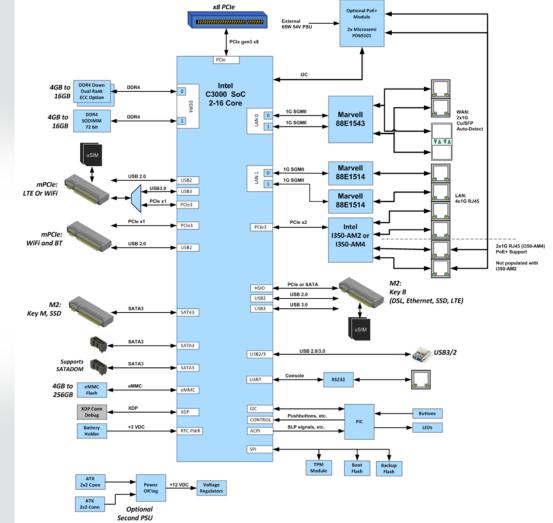
CPU	Intel® ATOM C3958/16C/2.0 GHz/TDP 31W
	Intel® ATOM C3758/8C/2.2 GHz/TDP 25W
	Intel® ATOM C3558/4C/2.2 GHz/TDP 16W
	Intel® ATOM C3338/2C/1.5 GHz/TDP 8.5W
BIOS	Coreboot, Blinkboot, or Insyde H2O
BIOS Flash	SPI – Dual redundant
OS	Linux
Memory	Two Channels, Memory Down, SODIMM, Up to 64GB, ECC Support, 2400 MTs
Storage	Soldered down eMMC (4GB to 256GB),
-	M.2 M-Key SATA (supports for 2230/42/60/80),
	M.2 B-Key SATA or PCIe x1G3(HSIO config) / USB2 and USB3 (support for 2230/42/52/60/80)
	1xSATA for 2.5" SSD/HDD
	1xSATA DOM (SATA DOM supports +5V)
Ethernet ports	Up to 8 ports:
	2 x1GbE RJ45 x via C3000/x553 through Marvell 88E1514P,
	4x 1GbE RJ45 via i350AM4 (with optional +2x1GbE POE+), or 2x 1GbE RJ45 w/ i350AM2 no POE+.
	2x 1GbE Combo (UTP or SFP), 2x via C3000/x553 through Marvell 88E1543, SFP slots support 3W each.
	Supports for SR-IOV
Console	RS232 RJ45 (Cisco pinout) on front panel
	Default, 115200
USB 3.0	1x USB 3.0 on front panel
mPCle	2x mini PCIe expansion slots

Madrid

RMN: IA3101 1U IA3001 Desktop

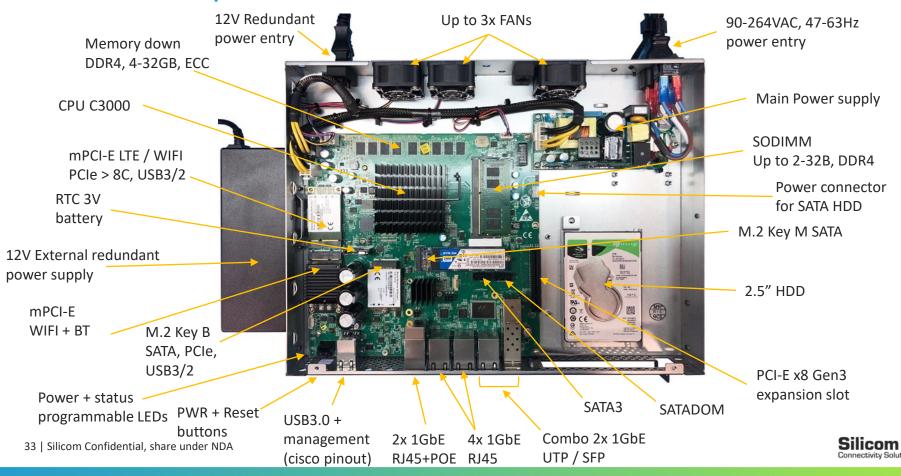
Feature:

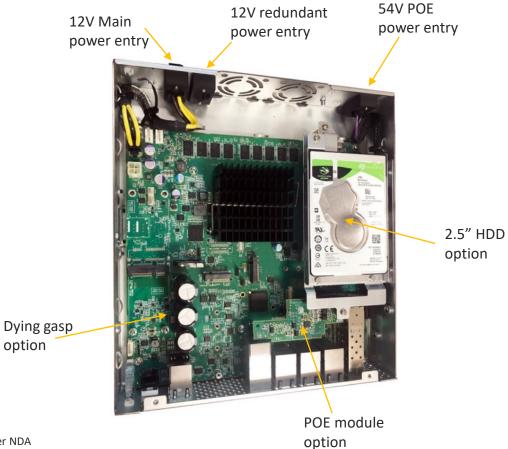
1U/ PCIe Expansion	Support for x8 Gen3 Card, 25W power budget (1U)
LTE	mini-PCle Slot. PCle x1G3 or USB 3.0 and USB 2.0. Externally accessible dual SIM slots
	M.2 LTE Slot (B-Key). USB 3.0 USB 2.0 Externally accessible dual SIM slots
WiFi	Support for 2x mini-PCIe slots which supports simultaneous dual-band
	Support for M.2 Wi-Fi card (Intel WAV654 802.11ax 2+2 Concurrent Dual-Band)
TPM	TPM 2.0
Dying Gasp	The SOC supports a hold-up/warning circuit to allow a Dying Gasp packet
(option)	
Redundant	1U – external AC power supply + second DC (+12V) power supply
Power supply	Desktop – (2) units of DC (+12V) power supply
(option)	
POE+	2x POE+ ports supported on 8 port SKU
(option)	
Form Factor	1U: 350x260x44mm
(WxDxH)	Desktop: 222x241x44mm
Rack mount option for desktop	Enables (2) desktop unit installed in a 1U rack



Madrid

RMN: IA3101 1U IA3001 Desktop





Madrid – 1U platform details

Madrid – Example of Desktop Configuration

Network Disaggregation at the WAN Edge with Open SD-Edge platform

Open and Secure WAN Edge Connectivity

Agenda

Market Trends

Open SD-Edge Platform

Target Use Cases

Open Ecosystem

IP Infusion Solves the uCPE Challenge for MSPs

SD-WAN/SASE

Dominating the Enterprise...

BUT, too proprietary

Openness

Tailor uCPE platform and services to the needs of the environment

Managed Services

Dominating the delivery

BUT, too expensive, too complex, and not agile

Future Ready - Software-Defined Agility

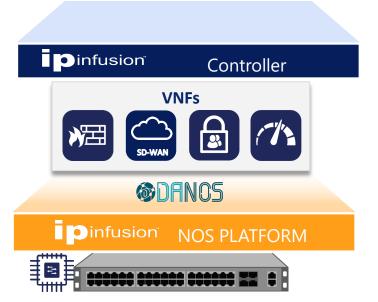
Readily onboard SD-WAN or SASE solutions with virtualized services

Driving down costs

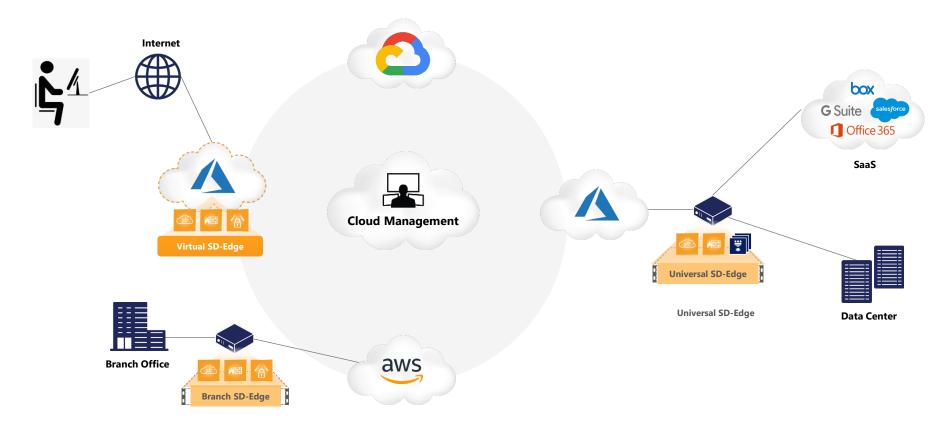
BUT, requires integration and support

Carrier Grade Support

7/24 product support with expert professional advice


Open SD-Edge Platform

Powered by DANOS-Vyatta edition



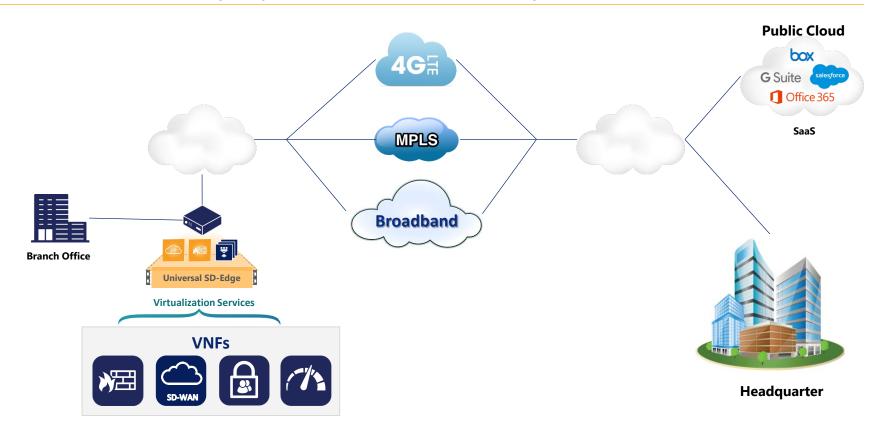
- DANOS-Vyatta edition (DVe) supports an optimized software forwarding plane and switching silicon integration
- DVe: Widely deployed by AT&T for multiple use cases
- Open SD-Edge platform is optimized for cloud and WAN edge services
- Best-in-Class, validated VNFs for service agility
- Lower TCO
- Carrier-grade commercial support

Open SD-Edge Target Use Cases

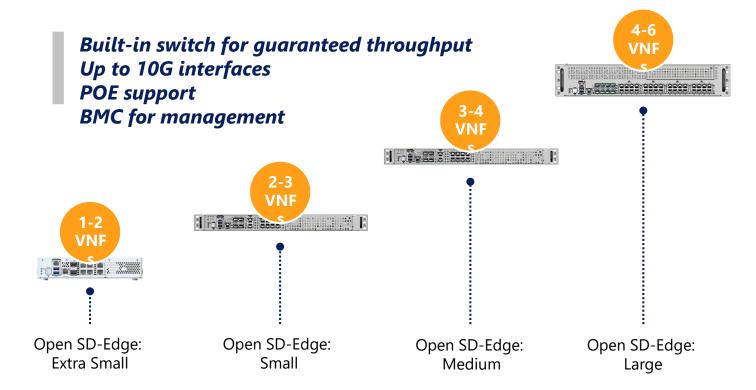
IP Infusion Open SD-Edge Solutions

Virtual SD-Edge

Virtual SD-Edge	Universal SD-Edge Branch SD-Edge
Secure, robust connectivity to the cloud	Secure branch office connectivity and cloud migration
 Available for hosting in the public cloud marketplace or private cloud/server Includes: vRouter, VPN, vFirewall, 	 VM or White Box form factor (multi-platform) vRouter, VPN, vFirewall 3rd party VNFs for on-demand services 1G or 10G interfaces


Universal SD-Edge

Branch SD-Edge



Universal SD-Edge

Next Generation uCPE Solution for Open and Secure WAN Connectivity

Open Platforms – Lowest Cost per Bit

Universal SD-Edge Differentiators

DANOS-Vyatta edition Virtualization Platform

Built-in routing, security functions, and a common abstraction to support hardware offloads and software data plane to enable operators to quickly ramp up new services and revenue

Universal SD-Edge Completely Open Architecture

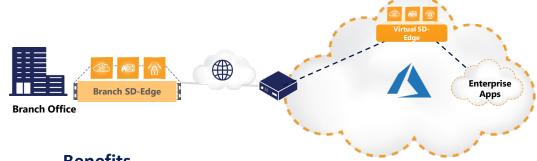
Open source-based software and best-ofbreed Open Hardware (White box uCPE) can deliver line rate throughput and lower MSPs' total cost of ownership

Fully managed NFV Infrastructure Platform

Offering choice of uCPE hardware & best-inclass VNFs.

Complete VNF life cycle management solves operator pain points to deploy new ondemand services.

MSPs and Enterprises can dynamically add new services thereby increasing agility and lowering the operational costs


Branch SD-Edge - Secure Branch Router

Overview:

Secure WAN connectivity to enterprise resources in the public cloud

Key Features:

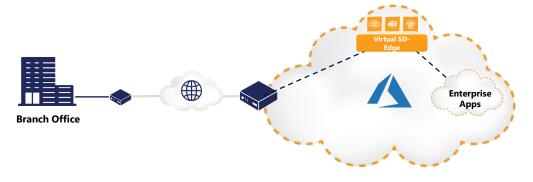
- Extend VPN tunnels into the cloud
- Comprehensive IPSec support
- **Enterprise-class firewall**
- Ready for upgrade as a VNF platform for ondemand services

Benefits

- Network reliability: Carrier-grade, single networking function for all networking needs
- Multi-cloud interoperability
- Future-proof deployment upgradable to the Universal SD-Edge uCPE
- Pay-as-you-grow: Best-of-breed white box (uCPE and x86 server) options available for quick service deployment
- Network management

Virtual SD-Edge – Open, Multi-cloud, Secure Routing

Overview:

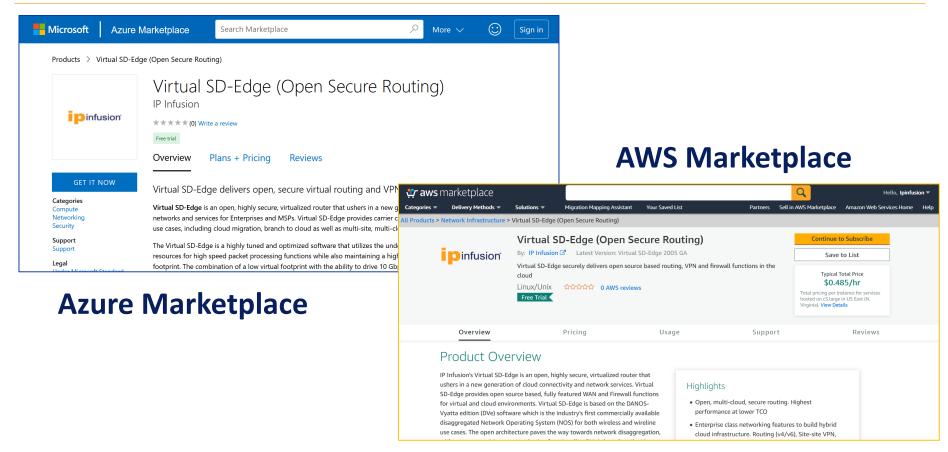

Virtual router, VPN, and vFirewall

Target customer segments

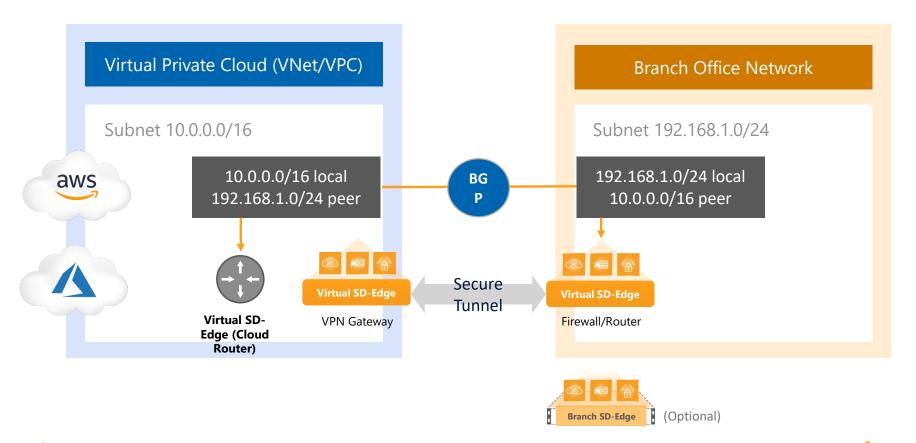
- CSP/MSP
- Enterprise
- Cloud Operators

Availability:

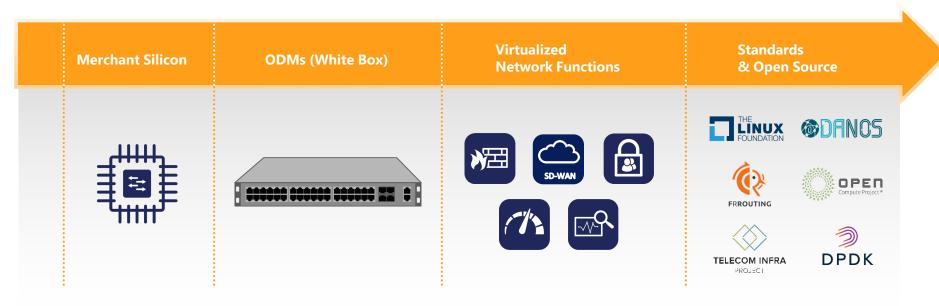
- VM on Azure or AWS public cloud
- VNF for private cloud/white box



Benefits:


- Highest performance at lower TCO
- Open Architecture
- Pre-integrated package
- Simplified (per vCPU) licensing
- Full-featured control plane supports diverse use cases
- Easy to deploy and manage
- High-Availability and Carrier Grade support

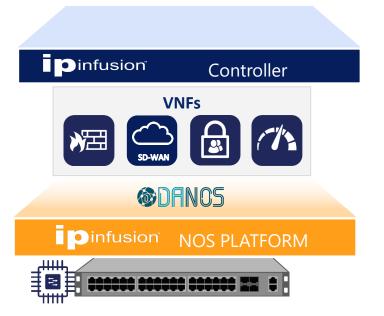
Virtual SD-Edge in Public Cloud



Virtual SD-Edge – Secure VPN and Routing in the Cloud

Announcing Open SD-Edge VNF Ecosystem

Join our growing VNF Ecosystem


Contact <u>ipisales@ipinfusion.com</u> to join the ecosystem of validated VNFs

Summary

- Open platform for WAN Edge solutions targeted for MSPs/CSPs
- DVe has built-in routing and security functions with a highly optimized software data plane
- On-demand services from a validated catalog of virtual functions (VNFs)
- DVe: Widely deployed by AT&T
- Lower TCO, Carrier-grade support

For more details, visit: https://www.ipinfusion.com/ucpe/

