Solution Guide

Open Compute
Network Operating System
Version 1.2.4

OcNOS™ Validated Solution Guide
Network Automation
OcNOS™ ZTP and Ansible

1 pinfusion"‘

Solution Guide

NetWOrk AUTOMatioNo 3
Zero Touch Provisioning (ZT P)o 4
DHCP Option Codesot e e e e e 4
Table 1. DHCP Option codes used for Provisioning OcNOS through ZTP. 4

AN DI o 4
Ansible for Configuration Templating 4
Table 2. Ansible Directory Structure foreach Role 5

Control Machine RequUIremMeEnts.o e e e 5
Managed Node Requirements. 5
Installation on Control Machine 5
Inventory Configuration 5
Defining Variables 6
MOdUIES . . . 7
OCNOS_CONfIgS . . o ot e 7

Basic Ansible Commands 7
Ping HOSt NOESo 7
Gathering Facts 7

Getthe Running Configuration 7
PlaybOoOKS . . . 9
Looping in a PlaybookK 10
Executing a Playbook 10

Enable Loggingo 10

R ErENCe . . . o o 10
Appendix: Using Ansible and ZTP to Perform EBGP IP CLOS Fabric Provisioning. 11
Figure 1. Spine Leaf TOpoIogyot e 11

Table 1. Spine and Leaf Color Codingo 11

Figure 2. Topology Connected to an OOB Management Network 11

Table 2. Spine Switch Common Parameters e e 12

Table 3. Leaf Switch Common Parameters 12

Table 4. Network Parameters for EBGP IP CLOS Topology oot e 12

Ansible Playbook Creation 13
Initial Configuration Generation using an OcNOS Ansible Module 14
Step 1: Create roles folder in the Ansible Directory 14
Step 2: Create Variables, Templates and Tasks files forthe DHCPRole 14
Step 2.1: Create a Variable File for DHCP RoOle e 14

Step 2.2: Create a DHCP Configuration Template File 14

Step 2.3: Create a Task File e e e 14

Figure 3. YAML File in the Tasks Sub-folderinthedhcp Folder 15

Figure 4. YAML File Inside the vars Sub-folderinthe dhcp Folder. 15

Figure 5. Jinja2 dhcp.j2 Template File in the Templates Sub-folder in the dhcp Folder 15

Step 3: Create Variables, Templates, and Task Files for Leafand SpineRoles 16
Figure 6. Variable Files “main.yml” of the Leafand Spinerole 16

Figure 7. Tasks “main.yml” File for Leaf Role 17

Figure 8. Tasks” main.yml” File for Spine Role. 17

Solution Guide

Figure 9. OcNOS Configuration Spine Template "spine.j2” e 17

Figure 10. OcNOS Configuration Template for Leaf “leaf.j2”. i 18

Step 4: Create the Playbook File using YAML Format e 18
Step 5: Editing the Hosts File inthe Ansible Folder 19
Step 6: Running the playbook 19
Snippet of the dhcpd.conf File Generated after Running the Playbook 20
Configuration During Run Time using OcNOS Ansible Module 21
Example: Configuring Logging Server for all Devices in the EBGP CLOS Network. 21
Step 1: Installing the Module 21
Step 2: Creating the Inventory File 21
HOSTS File Contents.o e e e e e e e 21
PlaybooK File 21
Step 3: Runthe Playbook 22
CON CLUSION. . . e e 22

ZTP Zero Touch Provisioning

DHCP Dynamic Host Configuration Protocol
YAML YAML Ain’'t Markup Language

SSH Secure Shell

EBGP External BGP

ECMP Equal Cost Multipath

OPEX Operational Expenditures

OcNOS Open Compute Network Operating System

Network Automation
Network Automation provides IT Administrators and Network Operators significant benefits. By deploying network
automation, Network Operators are able to:

Decrease their operating costs while improving the quality and consistency of the network.

Maximize the value of their IT organization, freeing highly skilled engineers from manual tasks and focus on key
business initiatives and quality services.

Deliver a holistic network capable of intelligent change monitoring and management, integrated fault management,
compliance enforcement, vulnerability detection, and software deployment.

To address these issues, OcNOS offers two solutions that provide robust network automation:

Zero Touch Provisioning (ZTP) — Zero touch provisioning is designed to get a switch with all necessary configurations
and into service without manual intervention. It involves from getting the correct software image file, IP addresses, and
running configuration.

Ansible — Rather than treating the network as a group of separate devices, Ansible models the data center by
describing how all of the systems interrelate. Using a simple IT engine, Ansible easily automates provisioning,
configuration management, application deployment, intra-service orchestration, and many other IT needs.

From new device deployments to configuration updates on large-scale IT infrastructures, Ansible together with ZTP can
expedite these tasks by automating their operations.

Solution Guide

The remainder of this solution guide takes a closer look at the structure of both ZTP and Ansible, operations. Additionally,
an actual real-world example of provisioning a CLOS network is provided for those who want to learn more about the
deployment of these automation tools.

Zero Touch Provisioning (ZTP)

In any Data Center deployment, there are typically around 50-100 new switches to configure. Most switches have an
identical configuration (except for some unique parameters, like the management IP address), and the new switches will
almost always need their software updated to a standard version. Typically, deploying a new network would mean logging
into every switch via the console port, repeating a configuration from a template, and then upgrading the software. With
multiple switches to build, it is time consuming and error prone. OcNOS provides complete Zero Touch Provisioning
through DHCP with a set of vendor options, which can be easily configured on a DHCP Server.

DHCP Option Codes

OcNOS ZTP works using DHCP server options. These options can be configured on any standard DHCP server. As per
the DHCP option several actions can be taken, a few of them relevant to ZTP are mentioned below.

Option String Option Code Optlon Type Vendor Meaning

default-url 114 ONIE Location of the image file
ocnos-license-url 251 Text OcNOS Location of the license file
ocnos-provision-url 250 Text OcNOS Location of the configuration file

By default, when the switch boots up, if it does not have an OcNOS image, the ONIE installer sends a DHCP discover
to get the IP address for the management Ethernet interface. If the DHCP Server is configured with a “default-url “option
pointing to the URL of the OcNOS image, it responds with option 114. ONIE installer will fetch the image and starts the
installation process.

Once the installation of the image is complete, the switch boots up with the OcNOS image. This time, OcNOS sends a
DHCP Discover. If the DHCP Server responds with with the “ocnos-license-url” and the “ocnos-provision-url” options,
OcNOS gets the license file and the configuration files and applies them automatically.

Ansible

Ansible can configure OcNOS devices using Ansible’s automation framework. The OcNOS Ansible module can be used
to send any arbitrary configuration command to the devices running OcNOS. The OcNOS Ansible module can also be
used to create Ansible Playbooks that automate provisioning network services.

Ansible works by connecting to nodes and pushing out small programs to them called “Ansible Modules.” These
programs are written to be resource models of the desired state of the system. Ansible then executes these modules
over SSH (by default), and removes them when finished.

The library of modules can reside on any machine, with no servers, daemons, or databases required. Typically, Ansible
works with any standard terminal program, a text editor, and (ideally) a version control system to keep track of changes to
the contents.

Ansible for Configuration Templating

While ZTP provides provisioning automation using DHCP, generating configuration files for switches can be automated
using Ansible.

Solution Guide

Ansible uses Jinja2 templating for populating the variables in a template-based configuration file. The variables for the
templates are placed in a YAML formatted file. Based on the topology, the switches can be categorized into different
roles and the template files for each role can be generated using Ansible as per the directory structure shown in the
table below.

Directory Description

tasks A main.yml file that should include a list of the tasks for this role. Tasks can be split and organized in
this folder.

templates Location where the template module looks automatically for the jinja2 templates included in the roles.

vars A main.yml file, which contains the variables for this role.

Ansible Control Node
Provisioning system
(Desktop/Cluster)

192.16.12.1
192.16.12.2

Control Machine Requirements

Ansible can run on any Linux machine with Python 2.7 or later.
Please refer to Ansible documentation for compatibility and running on other operating systems and platforms.

Managed Node Requirements

On the managed nodes, you need a way to communicate, which is normally SSH. By default SSH uses sftp. If sftp is not
available, you can switch to scp in /etc/ansible/ansible.cfg:

if True, make ansible use scp if the connection type is ssh
(default is sftp)
#scp 1if ssh = True

Also, the managed nodes need OcNOS 1.2.1 version or later.

Installation on Control Machine
1. Install Ansible:
pip install ansible
Note: Any installation dependency needs to be resolved.
2. Download the OcNOS Ansible modules from: https://github.com/IPInfusion/OcNOS/tree/1.2/

Solution Guide

3. Copy the OcNOS Ansible modules to the default module location:

/usr/lib/<python-directory>/site-packages/ansible/modules/core/system/

The <python-directory> depends on the Python version used on the control machine. For example, if Python 2.7
is used:

/usr/lib/python2.7/site-packages/ansible/modules/core/system

Inventory Configuration

The inventory is a description of the nodes that can be accessed by Ansible. By default, the Inventory is described by a
configuration file, in INI format, and whose default location is in /etc/ansible/hosts. The configuration file lists either the IP
address or hostname of each node that is accessible by Ansible. In addition, nodes can be assigned to groups.

This is an example of a configuration file:

192.168.12.10

[example-hosts]

hostl host=10.12.23.28 port=22 username=user password=userl23

host2 ansible ssh host=10.12.23.29 ansible ssh user=user ansible ssh pass=userl23
host3 ansible ssh host=10.12.26.29

foo.example.com

bar.example.com

[local]
localhost ansible connection=local

The same host can be part of multiple groups.

Defining Variables

An inventory file can also define variables used in playbooks.

Define Variables per Host

[OCNOS]

OcNOS1 ansible ssh host=10.12.44.34 ansible ssh user=user ansible ssh pass=user procId=350
nw=1.1.1.1/24 areald=l

OcNOS2 ansible ssh host=10.12.44.33 ansible ssh user=user ansible ssh pass=user procIld=150
nw=2.2.2.2/24 areald=2

Define Common Variables for a Whole Group

[OCNOS]

hostl ansible ssh host=10.12.45.251 ansible ssh user=user ansible ssh pass=user
host2 ansible ssh host=10.12.45.252 ansible ssh user=user ansible ssh pass=user
host3 ansible ssh host=10.12.45.253 ansible ssh user=user ansible ssh pass=user

[OCNOS:vars]
hostnameid=0cNOS
procId=100

Defining Variables in Separate Files

The preferred practice in Ansible is actually not to store variables in the main inventory file. In addition to storing variables
directly in the INI file, host and group variables can be stored in individual files relative to the inventory file:

Group variables can be defined in this path /etc/ansible/group_vars/
Host variables can be defined in this path /etc/ansible/host_vars/

Solution Guide

The file name should be the same as the group name/host name:

cat /etc/ansible/group vars/OCNOS
new _var: 5

For more about inventory file and variable definitions, refer to the following links:

http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/playbooks_variables.html

Modules

Modules are the units of work in Ansible. Each module is for the most part standalone, and can be written in a standard
scripting language such as Python, Perl, Ruby, or bash.

OcNOS-Ansible provides the ocnos_configs module for configuring OcNOS devices

ocnos_configs
The ocnos _ configs module prepares and executes OcNOS configuration commands for given Ansible tasks.
Place the commands to be executed with their input values:

bridge 1 protocol ieee vlan-aware

Placeholders (“?”) are useful when the same command needs to be executed multiple times with different values. Use
placeholders instead of actual input values in commands:

bridge ? protocol ? ? | 1,ieee,vlan-aware; 2,mstp,ring; 3,rstp

The example above executes the bridge protocol command 3 times with parameters as follows:

bridge 1 protocol ieee vlan-aware
bridge 2 protocol mstp ring
bridge 3 protocol rstp

The characters below can be used with placeholders:

| Separates a command from values

, Separates values for placeholders

; Separates a set of inputs for one command iteration
$ Separates commands given in the same line

The ocnos_configs file supports the following types of sub tasks:

config _cmds: Inputis executed in ZebOS-XP configuration mode
exec _cmd: Inputis executed in ZebOS-XP exec mode

module config cmds: Inputis executed as a group in ZebOS-XP configuration mode

Basic Ansible Commands

Note: Add an SSH Host Authentication Key (RSA) to the list of known hosts on a control machine before executing any
Ansible command on a host, as Ansible uses ssh to communicate with host nodes.

Ping Host Nodes
[OCNOS is a group of two hosts defined in host file]
[ping is Ansible’s core module]

[root@localhost]# ansible OCNOS -m ping

Solution Guide

ocnosl | SUCCESS => {
“changed”: false,
“ping”: “pong”

}

ocnos2 | SUCCESS => {
“changed”: false,
“ping”: “pong”

}

Run a live command on all hosts:

[root@localhost]# ansible OCNOS -a ‘/bin/echo Hello’

ocnosl | SUCCESS | rc=0 >>

Hello

ocnos2 | SUCCESS | rc=0 >>

Hello

Gathering Facts

[root@localhost]# ansible OCNOS -m setup
ocnos2 SUCCESS => {
“ansible facts”: ({

“ansible all ipv4 addresses”: [
“10.12.23.29”

1

“ansible all 1ipv6 addresses”: [
“fe80::207:e9ff:fea5:1a89”,
“fe80::207:e9ff:fea5:1a88”,
“fe80::202:a5ff:fede:ee’6”

1

“ansible architecture”: “i386”,

“ansible bios date”: “04/06/2011",

“ansible bios version”: “J01 v02.01”,

“ansible cmdline”: {

Get the Running Configuration

[root@localhost]# ansible OCNOS -a ‘ocsh -e “show running-config”’
ocnosl | SUCCESS | rc=0 >>

!

no service password-encryption

!

logging monitor 7

!

ip vrf management

!

forwarding profile 12-profile-three

ip domain-lookup

bridge 1 protocol mstp

tfo Disable

data-center-bridging enable bridge 1
feature telnet

feature ssh

no feature tacacs+

no feature ldap

Solution Guide

snmp-server view all .1 included
snmp-server enable snmp
ntp enable
username ocnos role network-admin password encrypted 1SMgm5VOt.$YUVowR2V4a9aiciX0YDwu.
sFlow disable
!
vlan database
vlan 10-20 bridge 1 state enable
!
spanning-tree mst configuration
!
ip pim register-rp-reachability
!
interface ethO
ip address 10.12.45.253/8
!
interface lo
ip address 127.0.0.1/8
ipv6 address ::1/128
!
interface xel
!
interface xe2
switchport
bridge-group 1
switchport mode hybrid
switchport hybrid allowed vlan add 10 egress-tagged disable
!
interface xe3
!
interface xe4d
!
line con 0
login
line vty 0 39
login
|

end

Playbooks

Ansible uses a simple language called YAML to create what are called “Ansible Playbooks.” Playbooks express
configurations, deployments, and orchestrations in Ansible. Each playbook maps a group of hosts to a set of roles. Each
role is represented by calls to Ansible tasks.

A sample playbook for the OcNOS Ansible module is shown below:

- hosts: OCNOS
tasks:
- ocnos _ configs:
config cmds:
- ‘bridge ? protocol ? ? | 1, ieee; 2,mstp,ring; 3,rstp $ interface eth3’
- ocnos _ configs:
config cmds:
- ‘vlan ? protocol ? ? | 1,ieee; 2,mstp,ring; 3,rstp’
- ‘hostname {{ hostnameid }}’
module config cmds:
- ‘interface ? $ bandwidth ? | ethl; 1g; $ eth2; 10g;’
- ocnos _ configs:
exec cmds:

- ‘wr’

Solution Guide

The OcNOS Ansible module takes ocnos_config tasks as input and prepares an OcNOS configuration command, that is
executed on hosts:

- ocnos _ configs:
config cmds:
- ‘bridge ? protocol ? ? | 1, ieee; 2,mstp,ring; 3,rstp $ interface eth3’

For the above task, the OcNOS command will look as follows:

ocsh -k -e ‘conf t’ -e ‘bridge 1 protocol ieee’ -e ‘bridge 2 protocol mstp ring’ -e ‘bridge 3
protocol rstp’ -e ‘interface eth3

’

Note: Commands run in non-strict mode and errors from ZebOS modules are ignored.

Looping in a Playbook

Ansible supports looping in playbooks, which is useful while configuring the same set of commands on multiple object
instances:

- hosts: LEAF1
ignore errors: yes
tasks:
- ocnos _ configs:
conflg cmds:
- interface {{ item }}
- ‘switchport’
- ‘bridge-group 1’/
- ‘switchport mode trunk’
- ‘switchport trunk allowed vlan add 10’
- ‘switchport trunk allowed vlan add 20’
- ‘switchport trunk allowed vlan add 30’
- ‘static-channel-group 1’
with items:
- xeb
- xeb

Executing a Playbook

1. Create a playbook file with a .yml extension
2. Execute as:

ansible-playbook <name>.yml

Enable Logging
Enable logging in /etc/ansible/ansible.cfg:

logging is off by default unless this path is defined
i1if so defined, consider logrotate
#log path = /var/log/ansible.log

Reference

Find more information on Ansible at http:/docs.ansible.com/index.html

10

Solution Guide

A CLOS network is a multi-stage switching arrangement that provides non-blocking performance. In the provisioning
example, we have 4 leafs connecting to 4 spines. See the topology shown in Figure 1.

Figure 1. Spine Leaf Topology

mn? saf Emmf s

e A . A .. e |

The uplinks from each leaf are color coded to mark the identity of the leaf spine connectivity.

Leaf Switch Spine Switch Color Code
Leaf-01 Spine-01 Black
Leaf-02 Spine-02 Blue
Leaf-03 Spine-03 Green
Leaf-04 Spine-04 Red

Note: For simplicity, we consider the Management Ethernet interfaces of all the switches to be connected to an Out of
Band (OOB) management network.

The DHCP Server, HTTP Server for the OcNOS Images, Licenses, and Configuration files all reside on the management
network. In this example, for simplicity, all servers are located in the same host.

Figure 2. Topology Connected to an Management Network

Management
Network
Server

Leaf-01 Leaf-02 Leaf-03 Leaf-04

| |
m Spine-04
| |

The recommended OS for the OOB host is Ubuntu, which can be downloaded here:

http://mirror.pnl.gov/releases/wily/ubuntu-15.10-desktop-i386.iso
The OS should contain Python 2.7.10, and Ansible can be installed via

In the example shown below, the network address of the interface of the host is assigned as 10.10.100.250/24. The
DHCP Server responds with address in the range of 10.10.100.0/24.

1

Solution Guide

Leaf Common Spine-01

Parameters

MAC Address ec:f4:bb:fd:5b:81 ec:f4:bb:fd:5b:82 ec:f4:bb:fd:5b:83 ec:f4:bb:fd:5b:84

(Management

Ethernet)

Management IP 10.10.100.1 10.10.100.2 10.10.100.3 10.10.100.4

address

License URL http:/10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/
licenses/leaf01_ licenses/leaf02__ licenses/leaf03 licenses/leaf04
license.bin license.bin license.bin license.bin

Configuration File http://10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/

URL licenses/leaf01_conf licenses/leaf02_conf licenses/leaf03_conf licenses/leaf04_conf

Router ID 1.1.1.1/32 2.2.2.2/32 3.3.3.3/32 4.4.4.4/32

Leaf Common Leaf-01 Leaf-02 Leaf-03 Leaf-04

Parameters

MAC Address ec:f4:bb:fd:5b:85 ec:f4:bb:fd:5b:86 ec:f4:bb:fd:5b:87 ec:f4:bb:fd:5b:88

(Management

Ethernet)

Management IP 10.10.100.5 10.10.100.6 10.10.100.7 10.10.100.8

address

License URL http://10.10.100.250/ http:/10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/
licenses/leaf01_ licenses/leaf02_ licenses/leaf03_ licenses/leaf04
license.bin license.bin license.bin license.bin

Configuration File http://10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/ http://10.10.100.250/

URL licenses/leaf01_conf licenses/leaf02_conf licenses/leaf03 conf licenses/leaf04 conf

Router ID 5.5.5.5/32 6.6.6.6/32 7.7.7.7/32 8.8.8.8/32

Spine Spine Spine IP Leaf Leaf Leaf IP Spine BGP Leaf BGP
Switch Interface Address Switch Interface Address ASN ASN

Spine-03 xel1/1 192.168.35.0/31 Leaf-01 xe1/3 192.168.35.1/31 65503 65412
Spine-04 xel/1 192.168.45.0/31 Leaf-01 xel/4 192.168.45.1/31 65504 65412

12

Solution Guide

The common parameters are used to build the “dhcpd.conf” file that is used by the DHCP Server. The Network
parameters are used to build the configuration files for Spine and Leaf switches. Ansible playbooks are used to populate
these parameters to the template files which are detailed in the next section.

Ansible Playbook Creation

Ansible uses a concept called a “Playbook” to perform more than one operation at a time. Playbooks are expressed in
YAML, which uses a standard YAML Parser.

Ansible Playbooks are made up of one or more plays, and a play consists of three sections:

The target section defines the hosts on which the play will be run and how it will be run. This is where we set the
SSH username and other SSH-related settings.

The variable section defines variables, that are made available to the play while running.
The task section lists all the modules in the order that we want them to be run by Ansible.

In our example, we will be creating a playbook named “ebgp-clos.yml”.

For a larger project, such as data center provisioning automation, Ansible provides “roles” that allow us to group files
together in a defined structure. Roles allow us to place variables, files, tasks, templates, and handlers in a folder, and
then include them when needed (refer back to Table 2).

For this example, three roles are created.

DHCP Role — takes the input from the common parameters and generates a configuration file from a DHCP template
configuration.

Spine Role — takes the input from the network parameters and generates a configuration file from an OcNOS template
configuration.

Leaf Role — takes the input from the network parameters and generates a configuration file from an OcNOS template
configuration.

Once the playbook is created, it can be run using the command ansible-playbook ebgp-clos.yml. This generates
configuration files in appropriate folders so that ZTP can handle the rest.

For each role, we need to follow a three step process:

1. Create a “main.yml” inside of the vars folder by specifying the parameters.
2. Generate the configuration template file in the template folder.

3. Create a “main.yml” inside the tasks folder which uses the built-in template module to identify the template placed in
the template folder.

The next sections are a step-by-step guide for creating and running the playbook:
Initial configuration generation using the OcNOS Ansible module

Configuration during run time using the OcNOS Ansible module

13

Solution Guide

Initial Configuration Generation using OcNOS Ansible Module

Step 1: Create Roles Folder in the Ansible Directory

We have identified three roles (dhcp, spine, and leaf roles) and the folders with the same names are created in the
roles folder in the default Ansible directory. The default Ansible directory is “/etc/ansible”. In each folder we create tasks,
templates, and vars folders.

root@MadDog:/etc/ansible# mkdir -p roles/{dhcp/{tasks,templates,vars},spine/{tasks,templates, vars},
leaf/{tasks,templates,vars}}
root@MadDog:/etc/ansible# tree

f—— ansible.cfg

f—— hosts
L roles
|-—— dhcp
| |——— tasks
| |-—— templates
| L— vars
|-—— leaf
| f—— tasks
| |-—— templates
| L— vars
L spine
|-—— tasks

f—— templates
L—— vars

13 directories, 2 files
root@MadDog:/etc/ansible#

Step 2: Create Variables, Templates and Tasks files for the DHCP Role

Step 2.1: Create a Variable File for DHCP Role

The variable file is a YAML file “main.yml” and the inputs are from the common parameters table. All the input parameters
for the eight devices in the example topology are populated using YAML Structure. Each device is represented as a
hostname and each hostname has a list of parameters. Refer to Figure 4 for the complete YAML file. This YAML file is
placed in the vars folder in the dhcp folder.

Step 2.2: Create a DHCP Configuration Template File

The configuration template file for the DHCP server needs to be created in the templates folder of the dhcp folder. This
file is a Jinja2 template and is named dhcp.j2. Refer to Figure 5 for the completed configuration template file. The Jinja2
Template engine provides a looping feature which is used in the template.

Step 2.3: Create a Task File

The task file is a YAML file “main.yml” which uses the default Template module of Ansible. This YAML file goes into the
tasks folder inside the dhcp folder. Refer to Figure 3 for the contents of the YAML file inside the tasks folder.

14

Solution Guide

Figure 3. YAML File in the Tasks Sub-folder in the dhcp Folder

- name: Generate DHCP Configuration file template: src={{ item.profile }}.Jj2 dest=/etc/dhcp/dhcpd.conf

with items:

dhc segment

Figure 4. YAML File Inside the vars Sub-folder in the dhcp Folder

dhep

segment:

- topology: ebgp ip clos topology

profile: dhcp

devices:

hostname: Leaf 01 device
mac _address: ec:f4:bb:fd:5b:85
fixed address: 10.10.100.5

license _url: http://10.10.100.250/1licenses/leaf0l _license.bin

provision url: http://10.10.100.250/configs/leaf-0l.conf
hostname: Leaf 02 device

mac address: ec:f4:bb:fd:5b:86

fixed address: 10.10.100.6

license url: http://10.10.100.250/licenses/leaf02 license.bin

provision url: http://10.10.100.250/configs/leaf-02.conf
hostname: Leaf 03 device

mac _address: ec:f4:bb:fd:5b:87

fixed address: 10.10.100.7

license url: http://10.10.100.250/licenses/leaf03 1license.bin

provision url: http://10.10.100.250/configs/leaf-03.conf
hostname: Leaf 04 device

mac _address: ec:fd:bb:fd:5b:88

fixed address: 10.10.100.8

license url: http://10.10.100.250/licenses/leaf04 license.bin

provision url: http://10.10.100.250/configs/leaf-04.conf
hostname: Spine 01 device

mac _ address: ec:f4:bb:fd:5b:81

fixed address: 10.10.100.1

license url: http://10.10.100.250/1licenses/spine0l license.

provision url: http://10.10.100.250/configs/spine-0l.conf
hostname: Spine 02 device

mac _address: ec:f4:bb:fd:5b:82

fixed address: 10.10.100.2

license url: http://10.10.100.250/licenses/spine02 license
provision url: http://10.10.100.250/configs/spine-02.conf
hostname: Spine 03 device

mac _address: ec:f4:bb:fd:5b:83

fixed address: 10.10.100.3

license wurl: http://10.10.100.250/licenses/spine03 license.

provision url: http://10.10.100.250/configs/spine-03.conf
hostname: Spine 04 device

mac address: ec:f4:bb:fd:5b:84

fixed address: 10.10.100.4

license url: http://10.10.100.250/licenses/spine04 license.

provision url: http://10.10.100.250/configs/spine-04.conf

bin

.bin

bin

bin

Figure 5. Jinja2 dhcp.j2 Template File in the Templates Sub-folder in the dhcp Folder

default-lease-time 600;
max-lease-time 7200;

option ocnos-provision-url code 250 = text;

option ocnos-license-url code 251 = text;
option subnet-mask 255.255.255.0;
option broadcast-address 10.10.100.255;

15

Solution Guide

option routers 10.10.100.250;
option default-url “http://10.10.100.250/images/DELL _S6000 ON-OcNOS-1.2.0.199-DC MPLS-S0-P0-
installer”;

subnet 10.10.100.0 netmask 255.255.255.0 {
range 10.10.100.1 10.10.100.200;
{$ for items in item.devices %}
host {{items.hostname}} {
hardware ethernet {{ items.mac address }};
fixed-address {{ items.fixed address }};
option ocnos-license-url “{{items.license url}}”;

option ocnos-provision-url “{{items.provision url}}”;

{%$ endfor %}

Step 3: Create Variables, Templates, and Task Files for Leaf and Spine Roles

Creating variable, Template, and Task files for the switches in the leaf and spine roles uses a similar process to that
described in step 2 for the DHCP role. The variables file is a YAML file named “main.yml” and the inputs for these
files are based on the network parameters described in Table 7. Figure 6 shows the content of the YAML files for the
leaf and spine roles. Only the first hostname is shown and the rest of the hostnames are filled up from the network
parameters table.

Figure 6. Variable Files “main.yml” of the Leaf and Spine Role

switches: switches:
- hostname: leaf-01 - hostname: Spine-01
profile: leaf profile: spine
loopback: 5.5.5.5 loopback: 1.1.1.1
local ASN: 65412 local ASN: 65501
links: links:
- leaf port: xel/l - spine port: xel/l
spine switch: Spine-01 leaf switch: Leaf-01
leaf port local ip: 192.168.15.1 spine port local ip: 192.168.15.0
spine port remote ip: 192.168.15.0 leaf port remote ip: 192.168.15.1
remote ASN: 65501 remote ASN: 65412
- leaf port: xel/2 - spine port: xel/2
spine _switch: Spine-02 leaf switch: Leaf-02
leaf port _local _ip: 192.168.25.1 spine port local ip: 192.168.16.0
spine port remote ip: 192.168.25.0 leaf port remote ip: 192.168.16.1
remote ~ASN: 65502 remote ASN: 65413
- leaf port: xel/3 - spine port: xel/3
spine _switch: Spine-03 leaf switch: Leaf-03
leaf port local ip: 192.168.35.1 spine port local ip: 192.168.17.0
spine port remote ip: 192.168.35.0 leaf port remote ip: 192.168.17.1
remote ASN: 65503 remote _ ASN: 65414
- leaf port: xel/4 - spine port: xel/4
spine switch: Spine-04 leaf switch: Leaf-04
leaf port local ip: 192.168.45.1 spine port local ip: 192.168.18.0
spine port remote ip: 192.168.45.0 leaf port remote ip: 192.168.18.1
remote ASN: 65504 remote _ ASN: 65415
- hostname: leaf-02 - hostname: Spine-02
- hostname: leaf-03 - hostname: Spine-03
- hostname: leaf-04 - hostname: Spine-04

16

Solution Guide

Figure 7. Tasks “main.yml” File for Leaf Role ---

- name: Generate Leaf configuration files
template: src={{ item.profile}}.j2 dest=/tmp/configs/{{item.hostname}}.conf
with items:
switches

Figure 8. Tasks” main.yml” File for Spine Role

- name: Generate Spine Configuration files
template: src={{ item.profile }}.J2 dest=/tmp/configs/{{ item.hostname }}.conf
with items:

switches

Figure 9. OcNOS Configuration Spine Template”spine.j2”

hostname {{item.hostnamel|upper}}

!

interface lo

ip address 127.0.0.1/8

ip address {{item.loopback}} secondary

ipv6 address ::1/128

!

{%$ for links in item.links %}

interface {{links.spine port}}

description downlink to Leaf Switch {{links.leaf switch}}
ip address {{links.spine port local ip}}/31

!
{%$ endfor %}

!

router bgp {{item.local ASN}}

bgp bestpath as-path multipath-relax

max-paths ebgp 16

% for links in item.links %}

neighbor {{links.leaf port remote 1ip}} remote-as {{links.remote ASN}}
{%$ endfor %}}

!

line con 0

login

line vty 0 871

exec-timeout 0 0

login

|

end

Solution Guide

Figure 10. OcNOS Configuration Template for Leaf “leaf.j2”
!
hostname {{item.hostnamel|upper}}
!
interface lo
ip address 127.0.0.1/8
ip address {{item.loopback}} secondary
ipv6 address ::1/128
!
{$ for links in item.links %}
interface {{links.leaf port}}
description uplink to Spine Switch {{links.spine switch}}
ip address {{links.leaf port local ip}}/31
|
% endfor %}
!
router bgp {{item.local ASN}}
bgp bestpath as-path multipath-relax
max-paths ebgp 16
network {{item.loopback}} mask 255.255.255.255
{$ for links in item.links %}
neighbor {{links.spine port remote ip}} remote-as {{links.remote ASN}}
{%$ endfor %}}
!
line con 0
login
line vty 0 871
exec-timeout 0 0
login
|

end

After Step 3, the directory structure in the “/etc/ansible” folder will look like the one shown below. Each role has its tasks,
template and vars folder populated with respective YAML and Jinja2 files.

Step 4: Create the Playbook File using YAML Format

With all the relevant files in place, one can create the playbook. The playbook named “ebgp-clos.yml” is created in the */
etc/ansible” directory. The host is used as the localhost since the same host is being used as the DHCP Server, Ansible
controller, and HTTP Server. The three roles are defines as lists in the YAML file. The content of the file “ebgp-clos.yml”
is shown below:

- name: Build EBGP CLOS IP Topology
gather _ facts: no
hosts: localhost

roles:
- dhcp
- leaf

- spine

18

Solution Guide

Step 5: Editing the Hosts File in the Ansible Folder
The hosts file should contain the line below for the “ebgp-clos” playbook template to work.
localhost ansible_connection=local

The final structure in the ansible directory should look like the one shown below:

|-—— ansible.cfg
|-—— ebgp-clos.yml

}-—— hosts

L roles
f—— ansible.cfg
f—— dhcp
| f—— tasks

| L— main.yml
|——— templates

I
|
| | L—— dhcp.j2
| L— vars
| L— main.yml
|-—— leaf
| |-—— tasks
| | L— main.yml
| |-—— templates
|] L= leaf.j2
| L— vars
| L— main.yml
L spine
|——— tasks

| L— main.yml
|-—— templates
| L—— spine.j2
L—— vars

L— main.yml

Step 6: Running the playbook

Before this step, all relevant device licenses should be placed in the “/tmp/licenses” folder of the host. The playbook is
run with the command ansible-playbook ebgp-clos.yml

After this command, configuration files are pushed to respective folders. The DHCP Server is started with the command
service isc-dhcp-server start. To start the HTTP Server, change the directory to “/tmp” and issue the command
python —m SimpleHTTPServer 80.

After Step 6, all devices can be provisioned using ZTP.

Snippet of the dhcpd.conf file generated after running playbook

The complete directory structure is available as a GIT repository at:

https://github.com/IPInfusion/OcNOS/tree/1.2/

19

Solution Guide

Snippet of the dhcpd.conf File Generated after Running the Playbook

The complete directory structure is available at: https:/github.com/IPInfusion/OcNOS/tree/1.2/

default-lease-time 600;

max-lease-time 7200;

option ocnos-provision-url code 250 = text;

option ocnos-license-url code 251 = text;

option subnet-mask 255.255.255.0;

option broadcast-address 10.10.100.255;

option routers 10.10.100.250;

option default-url “http://10.10.100.250/images/DELL _S6000 ON-OcNOS-1.2.0.199-DC MPLS-S0-P0-
installer”;

subnet 10.10.100.0 netmask 255.255.255.0 {
range 10.10.100.1 10.10.100.200;
host Leaf 01 device {
hardware ethernet ec:f4:bb:£d:5b:85;
fixed-address 10.10.100.5;
option ocnos-license-url “http://10.10.100.250/licenses/leaf0l license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/leaf-01l.conf”;

host Leaf 02 device {
hardware ethernet ec:f4:bb:£d:5b:86;
fixed-address 10.10.100.6;
option ocnos-license-url “http://10.10.100.250/licenses/leaf02 license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/leaf-02.conf”;

host Leaf 03 device {
hardware ethernet ec:f4:bb:£d:5b:87;
fixed-address 10.10.100.7;
option ocnos-license-url “http://10.10.100.250/1licenses/leaf03 license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/leaf-03.conf”;

host Leaf 04 device {
hardware ethernet ec:f4:bb:£d:5b:88;
fixed-address 10.10.100.8;
option ocnos-license-url “http://10.10.100.250/licenses/leaf04 1license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/leaf-04.conf”;

host Spine 01 device {
hardware ethernet ec:f4:bb:fd:5b:81;
fixed-address 10.10.100.1;
option ocnos-license-url “http://10.10.100.250/licenses/spine0l license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/spine-01.conf”;

host Spine 02 device {
hardware ethernet ec:f4:bb:fd:5b:82;
fixed-address 10.10.100.2;
option ocnos-license-url “http://10.10.100.250/licenses/spine02 license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/spine-02.conf”;

20

Solution Guide

host Spine 03 device {
hardware ethernet ec:f4:bb:£d:5b:83;
fixed-address 10.10.100.3;
option ocnos-license-url “http://10.10.100.250/licenses/spine03 license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/spine-03.conf”;

host Spine 04 device {
hardware ethernet ec:f4:bb:fd:5b:84;
fixed-address 10.10.100.4;
option ocnos-license-url “http://10.10.100.250/licenses/spine04 license.bin”;
option ocnos-provision-url “http://10.10.100.250/configs/spine-04.conf”;

Configuration During Run Time using OcNOS Ansible Module

The OcNOS Ansible module is available for configuring devices during run time. This can be used if there is a common
task that needs to be executed on all devices. The common tasks such as configuring or changing logging servers.
NTP Servers for all devices can make use of this module, as well. The module can also be used to add device specific
configurations based on the host file variables.

Example: Configuring Logging Server for all Devices in the EBGP CLOS Network

Let us take the example of configuring a logging server on all eight devices that were provisioned using ZTP. The logging
server’s IP address is 172.16.1.1, and is reachable through the management Ethernet interface. This essentially is a two-
command set per device. In this case, it is 16 commands since it has to span across eight devices. Using a playbook,
Ansible automation can be used to configure all devices with a single command. This helps in the context of a large data
center where there are several hundred devices to be configured.

Step 1: Installing the Module

The OcNOS Ansible module is a Python script named “ocnos_congfigs.py,” which is provided because the OcNOS
Package has to be copied to the host machine that is running Ansible. The module has to be copied to the “/usr/lib/
python2.7/dist-packages/ansible/modules/core/system/” location. The module supports “exec_cmds” and “config_cmds.”

Step 2: Creating the Inventory File

The hosts file in the ansible directory can be used in this case to create an inventory file. For the sake of simplicity, all
devices’ usernames and passwords are kept similar. The hosts file has a group named “CLOS” which has the list of all
eight devices. The usernames and passwords are placed in the “CLOS:vars” group. The hosts file contents are as shown
in the listing below.

HOSTS File Contents

[CLOS]

SPINE-01 anisble ssh host=10.10.100.1
SPINE-02 anisble ssh host=10.10.100.2
SPINE-03 anisble ssh host=10.10.100.3
SPINE-04 anisble ssh _host=10.10.100.4
LEAF-01 anisble ssh _host=10.10.100.5
LEAF-02 anisble ssh _host=10.10.100.6
LEAF-03 anisble ssh host=10.10.100.7
LEAF-04 anisble ssh host=10.10.100.8

[CLOS:vars]

ansible ssh user=ocnos
ansible ssh _pass=ocnos

21

Playbook File

Once the Log.yml YAML Playbook file is created, the hosts variable calls the CLOS group in which the devices are listed.
The tasks section has the OcNOS Module using the “config_cmds” mode to configure a static route and logging server.

- hosts: CLOS
tasks:
- ocnos_configs:
config_cmds:
- “ip route vrf management 172.16.1.1/32 eth0”
- “logging server 172.16.1.1 77

Step 3: Run the Playbook

Once the hosts file and the playbook are ready, the playbook is run using the command

ansible-playbook Log.yml

All eight devices are now configured for sys logging.

Conclusion

OcNOS Zero Touch Provisioning along with Ansible modules greatly reduces the burden in provisioning the network
elements, and increases the efficiency of any large-scale deployment project. With templates already in place, network

operators can quickly replace the faulty elements and reduce downtime.

Refer to_https://github.com/IPInfusion/OcNOS/tree/1.2/ for sample Ansible code.

ipinfusion"‘

About IP Infusion

IP Infusion, the leader in disaggregated networking solutions, delivers the best network OS for white box and network
virtualization. IP Infusion offers network operating systems for both physical and virtual networks to carriers, service
providers and enterprises to achieve the disaggregated networking model. With the OcNOS™ and VirNOS™ network
operating systems, IP Infusion offers a single, unified physical and virtual software solution to deploy new services
quickly at reduced cost and with greater flexibility. Over 300 customers worldwide, including major networking equipment

manufacturers, use IP Infusion’s respected ZebOS platform to build networks to address the evolving needs of cloud,
carrier and mobile networking. IP Infusion is headquartered in Santa Clara, Calif., and is a wholly owned and independently
operated subsidiary of ACCESS CO., LTD. Additional information can be found at http://www.ipinfusion.com.

© 2016 IP Infusion, Inc. All rights reserved. ZebOS and IP Infusion are registered trademarks and the ipinfusion logo,
OcNOS and VirNOS are trademarks of IP Infusion, Inc. All other trademarks and logos are the property of their respective
owners. IP Infusion assumes no responsibility for any inaccuracies in this document. IP Infusion reserves the right to
change, modify, transfer, or otherwise revise this publication without notice. SB-001-A HM November 2016

Phone: +1 877-MYZEBOS
Email: sales@ipinfusion.com
Web: www.ipinfusion.com

U.S. (Santa Clara), +1 408-400-1912
Japan (Tokyo), +81 03-5259-3771
Korea (Seoul) +82 (2) 3153-5224

India (Bangalore), +91 (80) 6728 7000
China (Shanghai), +86 186 1658-6466
EMEA (Stockholm), +46 8 566 300 00

IP Infusion

An ACCESS Company

(408) 400-3000
www.ipinfusion.com

3965 Freedom Circle, Suite 200
Santa Clara, CA 95054

